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Abstract

We propose an algorithm for training neural networks in noisy label scenarios that
up-weighs per-example gradients that are more similar to other gradients in the
same minibatch. Our approach makes no assumptions about the amount or type
of label noise, does not use a held-out validation set of clean examples, makes
relatively few computations, and only modifies the minibatch gradient aggregation
module in a typical neural network training workflow.
For CIFAR-10 classification with varying levels of label noise, our method suc-
cessfully up-weighs clean examples and de-prioritizes noisy examples, showing
consistent improvement over a vanilla training baseline. Our results open the door
to potential future work involving per-example gradient comparisons.

1 Introduction

In typical neural network training, the gradient for a given minibatch is computed by summing the
gradients given by each example—in other words, each per-example gradient contributes equally to
the gradient for the entire minibatch. While this setup works well and is commonly used in practice,
based on human intuition, some examples might be more beneficial for training than others. In the
vanilla training setting, it can be challenging to quantify exactly how and why some examples are
better for training. In the noisy label setting, however, where not all data labels are correct, some
examples—those with clean labels—are better for training by definition. How might we find and
prioritize these clean examples?

Prior work has explored several approaches for discovering and up-weighing more important examples
in both noisy label and general scenarios [1, 2, 3]. Although these approaches show substantive
improvements, they often require a clean validation set and use complex methods such as meta-
learning and reinforcement learning. As such, their added utility with respect to their implementation,
computation, and complexity costs can be relatively low for practical use.

In this work, we present a simple approach for finding and prioritizing clean examples in the noisy
label scenario. In a given minibatch, we compare computed per-example gradients and up-weigh
gradients that are more similar to other gradients in the minibatch. We emphasize several potentially
appealing characteristics regarding the nature of our approach. First, our approach makes few
assumptions about training setting, as it is agnostic to the type and amount of label noise as well
as the network architecture used for training. Second, our approach does not require a held-out
validation set of clean examples, which several previous methods [1, 3, 4] use to guide their data
selection process. Finally, our algorithm performs few, parallelizable computations for comparing
gradients, making minimal modifications that in theory could be packaged into a module that could
easily be swapped in with current automatic differentiation libraries.



2 Proposed Method

When training neural networks in the noisy label scenario, some examples are labeled incorrectly and
their gradients do not update the model towards the optimum weights with respect to some given
evaluation set of clean labels. Therefore, the gradients produced by these examples are hurtful and
less valuable for learning than gradients produced by correctly labeled examples.

We formulate an approach based on the intuition that good gradients will update the model weights
more optimally and therefore will be more similar to each other compared with bad gradients. In other
words, we expect the gradients from two correctly labeled examples to have high similarity, while
the gradients from a correctly labeled example and an incorrectly labeled example should have low
similarly. Based on this intuition, we hypothesize that gradients from correctly labeled examples will
agree more with other gradients in the minibatch than gradients from incorrectly labeled examples,
and we aim to up-weigh these correctly labeled examples. For instance, an example of an apple
incorrectly labeled as an orange will produce a gradient that changes parameters to classify apples as
oranges, which will likely differ substantially from both gradients of correctly labeled apples and
those of correctly labeled oranges.

We express our algorithm formally as follows. In a minibatch of m examples, for each example i and
its corresponding gradient∇i, we compute a weight

wi =
∑

j∈[m]\{i}

exp (D(∇i,∇j)) (1)

where D(∇i,∇j) is the cosine similarity between ∇i and ∇j . After computing wi for all i ∈ [m],
we normalize the per-example weights to sum to one by dividing each wi by

∑
i wi. Now, we output

a new weighted minibatch gradient∇ =
∑

i wi∇i, which is used to update the network.

Note that by definition, per-example gradients that are more similar to other gradients in the minibatch
will have higher D(∇i,∇j) and therefore will be assigned higher weights, while gradients that are
less similar to other gradients in the minibatch will have lower weights. We apply an exponential
function to D because the cosine similarity between two gradients can be negative.

In practice, the following three simple modifications help generate higher quality weightings:

1. computing D(∇i,∇j) for only the values corresponding to the last layers of the network,
2. scaling D(∇i,∇j) by an annealing factor a that remains constant throughout training, and
3. computing wi using only the top-k values of D(∇i,∇j).

We explore the effects of these modifications in through ablation studies in §3.3.

3 Experiments

We perform several experiments in the noisy label scenario to compare our method with vanilla
training. We use a similar setting to the UNIFORMFLIP experiments in Ren et al. [3], where all
labels in the training set can uniformly flip to any other label class (labels in the validation set remain
clean), one of the most studied settings in the literature. We use the CIFAR-10 dataset [5], which
contains 50,000 training images and 10,000 testing images uniformly distributed over ten classes. To
save computation time, we use the LeNet architecture [6], a small five-layer neural network. For all
experiments, we train LeNet with a minibatch size of 128 for 30 epochs with the Adam optimizer [7]
at an initial learning rate of 0.001, decaying by 0.85 every epoch, with no hyperparameter tuning.

3.1 Main Result

In Table 1, we show results for the CIFAR-10 dataset with 40% noise, comparing the performance
of our proposed method with a vanilla training baseline as well as an ideal oracle method that sets
the weights of all incorrectly labeled examples to zero. For each configuration, we report the mean,
standard deviation, and max over five random seeds where for each seed, we compute the mean
validation accuracy during the last five epochs of training. The results for our proposed method shown
here use the only last layer of gradients with a = 4 and k = 4, enhancement parameters that we
explore in 3.3. In Figure 1, we show an example ranking and weighitng from our method using the
above configuration. In the next section, we elaborate more on relevant baselines for our experiment.
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Training Algorithm Accuracy: µ± σ (max)
Vanilla 55.65±0.75 (56.81)
Oracle 62.31±0.87 (63.80)
Ours 57.09±0.95 (58.43)

Table 1: For CIFAR-10 training with 40% label noise, our proposed method yields about 1%
improvement over vanilla training.

Figure 1: Example ranking and weighting (highest and lowest weighted examples) from our proposed
method using only the last layer of gradients with parameters a = 4 and k = 4 in a minibatch of
128 examples. Noisy labels are shown above each image and weights are shown below each image.
Correctly labeled images are shown with solid green borders, whereas images with flipped labels
labels have dashed red borders.

3.2 Baselines

As shown in Table 2, we also trained several natural baselines that address the noisy label setting, but
do not find that they significantly improve over vanilla training. We find that the rectified Gaussian
baseline [3] does not improve over vanilla training, which starkly contrasts the 7.9% improvement
surprisingly reported by Ren et al. (keeping in mind that our experiments use a much smaller network
than theirs). We also train a random-uniform baseline, where each per-example weight is uniformly
sampled from (0, 2/m), where m is the minibatch size. This baseline does comparable with or worse
than vanilla training.

As another set of baselines, we also explore a two-stage training scheme. We first train a vanilla
model on noisy examples (as in the vanilla training baseline), and we either (1) fine-tune the same
vanilla model using only examples where the potentially noisy label matches the model’s prediction
(fine-tune), or (2) train a second model from scratch using only examples where the potentially noisy
label matched the first model’s prediction (from scratch). Neither of these models outperform the
vanilla training baseline. We train all baselines for 60 total epochs, compared with 30 epochs of
training in the vanilla configuration.

Baseline Last-5 Acc Top-5 Acc
Vanilla 55.7 56.4
Rectified Gaussian 55.1 55.3
Uniform Random 55.8 56.0
Two-stage: Fine-Tune 49.8 49.8
Two-stage: From Scratch 52.9 53.0

Table 2: Baseline methods for addressing the label-noise scenario did not improve substantially over
vanilla training despite being trained for twice as many epochs.
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3.3 Ablation Studies

In this subsection, we explore three modifications to our method that help rank correctly labeled
examples higher and incorrectly labeled examples lower, therefore leading to better performance.

Similarity between different layers of gradients. Prior work has found that different layers in a
neural network specialize in detecting specific features; for instance, the first layer of a neural network
often focuses on low-level features that resemble Gabor filters or color blobs [8], while the last layers
in a neural network often recognize high-level, task-specific features. As shown in Figure 2, we
find that restricting the gradient similarity computation to only the last layer leads to better example
rankings, since the last layer of a gradient likely relates more to the class of the example than earlier
layers.

(a) (b) (c)

Figure 2: Restricting gradient similarity computations to only the last layer of the gradient yields
better example rankings. (a) shows the training plot with the average validation accuracy over the
last five epochs in brackets, (b) shows the number of incorrectly labeled examples in the top-10
examples by ranking (lower is better), and (c) shows the number of incorrectly labeled examples in
the bottom-10 examples by ranking (higher is better).

Scaling D(∇i,∇j) by an annealing constant a. When using the cosine similarity function, the
maximum agreement between two gradients is at most 1, and so even when two gradients are very
similar, the signal from that pair is at most 1 and can be lost in the noise from a large number of
gradient pairs in the minibatch that agree somewhat. In an attempt to address this issue, we scale
D(∇i,∇j) by an annealing constant a before applying the exponential function, which has the effect
of up-weighing gradient pairs that with high similarity and down-weighing gradient pairs with weak
or negative similarity.

(a) (b) (c)

Figure 3: Scaling the D(∇i,∇j) by an annealing constant a improves example rankings, with a = 8
giving the best results. (a) shows the training plot with the average validation accuracy over the last
five epochs in brackets, (b) shows the number of incorrectly labeled examples in the top-10 examples
by ranking, and (c) shows the number of incorrectly labeled examples in the bottom-10 examples by
ranking.
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Computing wi using the only top-k D(∇i,∇j) values. In the original version of our algorithm,
we compute wi by summing exp(D(∇i,∇j)) for all j ∈ [m]\{i}. It is possible, however, that not
all other examples j are relevant for determining whether i is correctly labeled. We hypothesize that
computing wi using only the top-k values of D(∇i,∇j) could yield a better ranking, since correctly
labeled examples are expected to have several high values of D(∇i,∇j) from other examples in their
class, whereas incorrectly labeled examples should struggle to find other examples that produce high
D(∇i,∇j). Figure 4 shows an ablation study for k = {128, 64, 16, 8, 4, 2} in the setting of 10-class
classification with minibatch size 128 when the annealing constant is 4, and we see that k = 4
produces the best results. An alternative modification could compare ∇i and ∇j only when i and j
belong to the same class, but we find that this setup does not perform better than top-k weighting (see
§6.1).

(a) (b) (c)

Figure 4: Computing wi using only the top-k values of D(∇i,∇j) substantially improves ranking,
with k = 4 giving the best results for our scenario. (a) shows the training plot with the average
validation accuracy over the last five epochs in brackets, (b) shows the number of incorrectly labeled
examples in the top-10 examples by ranking, and (c) shows the number of incorrectly labeled
examples in the bottom-10 examples by ranking.

3.4 Noising Ratios

As further analysis, we study how our proposed method performs compared with vanilla training for
different noisy label ratios. Happily, we find that in addition to the 40% label noise scenario (60%
clean data) used for all above experiments, our method also outperforms vanilla training for clean
label ratios of 20%, 40%, and 80%. Figure 5 shows these results.

Figure 5: Our method is robust to the amount of label noise, outperforming vanilla training for clean
label ratios of 20%, 40%, 60%, and 80%.
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3.5 Decoupling Ranking and Weighting

Our proposed algorithm provides both a ranking and weighting for the per-example gradients, but the
algorithm that produces the best ranking may not produce the best weighting. In this experiment, we
decouple ranking and weighting by using our proposed algorithm for ranking and using the following
heuristic for weighting: some fraction of per-example gradients are removed (their weight is set to
0), and the remaining gradients are given uniform weight (such that the sum of their weights is 1).
In Figure 6, we show results from removing the bottom-ranked 20% and 40% gradients, for which
removing the bottom 20% of gradients outperforms vanilla training. As additional confirmation of
signal in the ranking produced by our method, we show that removing the top-ranked 40% gradients
does considerably worse, as expected.

Figure 6: Results when our proposed algorithm is used purely for ranking and weighting is done by
removing some of the per-example gradients in the minibatch and giving the remaining gradients
uniform weight. Average validation accuracy over the last five epochs is shown in brackets.

4 Related Work

Several prior studies have proposed methods for weighting training examples differently. Perhaps
the two most relevant are Ren et al. [3] and Wang et al. [1]. Ren et al. proposed a meta-learning
algorithm that assigns per-example weights to minimize the loss on a clean unbiased validation
set via a meta-learning algorithm, showing substantial improvements in data imbalance and noisy
label scenarios [3]. In the same spirit, Wang et al. up-weighed examples with similar gradients
to a validation set using reinforcement learning and demonstrated improvements for both image
classification and machine translation [1]. These studies both show strong results but use a held-out
validation set to guide optimization, which we do not use.

Our work also draws inspiration from work in the area of curriculum learning [9], which also aims
to present data to models in a non-uniform fashion but in terms of order instead of weighting. In
curriculum learning, heuristics are often used to gain insight into which examples might be more
meaningful (often in terms of easy and hard) [10, 11, 12, 13], while our method uses gradient
similarity to determine how to weigh examples. Boosting algorithms such as AdaBoost [14], which
selects harder examples for training subsequent classifiers, also relate to our work in a similar fashion.

The noisy label setting has been well-explored in deep learning literature in many methods that do
not modify how per-example gradients are aggregated. Hendrycks et al. [4] use a loss correction
technique that uses trusted examples to mitigate label noise; Jiang et al. [15] train a mentor network
to provide a curriculum for a student network to focus on samples of labels that are probably correct;
Li et al. [16] present a distillation framework evaluated on several real-world datasets; Menon et
al. [17] propose a variation of gradient-clipping; and Xiao et al. [18] use a probabilistic graphical
model to correct wrong labels in a clothing classification dataset. While these methods all provide
substantive improvements over vanilla training, they use (understandably) complex methods that
sometimes involve multiple stages of training, whereas our method makes minimal modifications to
standard neural network training.
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Finally, computing per-example gradients is required for implementing our method, a non-trivial
implementation detail not native to automatic differential libraries, for which [19, 20] are helpful
resources.1

5 Discussion

In closing, we have shown that in the noisy label scenario, up-weighing per-example gradients that
are more similar to other gradients in the same minibatch produces a ranking that prioritizes clean
examples and leads to better training in the noisy label scenario. Our findings indicate some signal in
the idea of comparing per-example gradients, opening the door to future work along similar lines.

Our approach, however, does have limitations. Foremost, we found in preliminary experiments
that using our method for the clean data setting can produce either an improvement or a decay
in performance of up to 1%, depending on the task and the parameters used for our algorithm.2
Further experiments will need to be conducted to find parameters for our algorithm that provide
both substantive improvement on the noisy label scenario and non-inferior performance in the clean
data scenario. Also, while our parameters for top-k and annealing appear relatively robust in our
experiments, it might be necessary to tune those parameters when training with particularly small or
large minibatch sizes and for different noising ratios.

Future work could take several directions. In the noisy label scenario, we could enhance our algorithm
to fix the label of examples likely to be incorrect, potentially by making comparisons of gradients
computed with hypothetical labels. In the general scenario, our algorithm could be seen as a type
of momentum, for which we have seen some promising results but would need further parameter
tuning and experiments to confirm. For additional evaluation, our method could be validated in other
settings such as the real-world datasets proposed by Li et al. [16], weakly labeled datasets [21], or
noisy label scenarios in natural language processing (as our technique is not specific to computer
vision). Finally, to facilitate use of our algorithm as an easy-to-use baseline over vanilla training, we
could refactor our existing code as PyTorch module for easy implementation by other researchers.
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in performance on CIFAR-10 in the clean data scenario.
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6 Supplementary Materials

6.1 Computing wi using only within-class D(∇i,∇j)

A natural idea is to compute wi using only D(∇i,∇j) when i and j belong to the same class, since
correctly labeled examples should have high similarity with other correctly labeled examples, whereas
incorrectly labeled examples should not have high similarity with any other examples in the same
supposed class. We find that, as shown in Figure 7, this method helps does not outperform top-k
weighting for our setting. Notably, the intuition of this within-class idea is only valid when there are
a large number of examples per class in each minibatch.

(a) (b) (c)

Figure 7: Computing wi using only within-class D(∇i,∇j) does not outperform the top-k modifi-
cation. (a) shows the training plot with the average validation accuracy over the last five epochs in
brackets, (b) shows the number of incorrectly labeled examples in the top-10 examples by ranking,
and (c) shows the number of incorrectly labeled examples in the bottom-10 examples by ranking.
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