
June 8, 2020 Jason W. Wei

1.6 Recurrent Neural Networks

The general idea of an RNN is that for a given input x〈t〉, we compute an activation a〈t〉 as a function of
both x〈t〉 and a previous activation, a〈t−1〉. The simplest form can be expressed as

a〈t〉 = g(Wa[a〈t−1〉, x〈t〉] + ba) . (14)

This simple formulation, when used over many iterations, is commonly plagued by the vanishing gradient
problem, just as DNNs are. For instance, in the sentence The cat, who just ate lunch at Popeyes, was full,
the RNN must memorize whether cat is singular or plural for the entire modifying clause, and it is hard to
backpropagate that information through all the middle words.

We address this problem with the GRU cell (Gated Recurrent Unit). The intuition is to have some memory
cell c, which keeps track of relevant information. In the above sentence, for example, a single feature in c
could represent whether the cat is singular or plural.

For every new time step, we compute a candidate new memory cell c̃〈t〉 = tanh (wc[c
〈t−1〉, x〈t〉] + bc) as a

function of the previous memory cell and the current input. But how important is this new memory cell
with respect to the old memory cell? We can give it a weight from 0 to 1 (in practice, either very close to
zero or very close to one) computed using an update gate Γu = σ(wu[c〈t−1〉, x〈t〉]+bu). Now, we finally arrive
at our new memory cell c〈t〉 = Γu � c̃〈t〉 + (1− Γu)� c〈t−1〉.

It turns out that in addition to the update gate, which dictates how much of the new memory cell comes
from the candidate memory cell, a relevance gate, Γr, which tell us the relevance of the previous memory
cell c〈t−1〉, also helps. We therefore arrive at the five equations for the GRU:

c̃〈t〉 = tanh (wc[Γr � c〈t−1〉, x〈t〉] + bc) (15)

Γu = σ(wu[c〈t−1〉, x〈t〉] + bu) (16)

Γr = σ(wr[c
〈t−1〉, x〈t〉] + br) (17)

c〈t〉 = Γu � c̃〈t〉 + (1− Γu)� c〈t−1〉 (18)

a〈t〉 = c〈t〉 (19)

For the LSTM cell, we use three gates instead of two. We remove the relevance gate and replace it with an
forget gate and output gate. The forget gate Γf replaces (1− Γu) from the GRU, and the output gate gives
a〈t〉 = Γo � tanh c〈t〉.

9


	Key Concepts
	Logistic Regression
	Improving Deep Neural Nets
	Bias and Variance
	Regularization
	Activation functions
	Initialization
	Optimization algorithms
	Q & A

	Deriving Backprop
	Forward Pass
	Backward Pass

	k-means Clustering
	Convolutional Neural Networks
	Basic ConvNets
	ResNet
	Inception Net
	Q & A

	Recurrent Neural Networks

	Natural Language Processing
	Word Embeddings
	Attention
	Transformers
	BERT


