
June 8, 2020 Jason W. Wei

1.2 Improving Deep Neural Nets

1.2.1 Bias and Variance

• High bias means that you aren’t fitting the training set well. Use a bigger network or train for longer.

• High variance means that there is a big difference between performance on the training and dev set.

1.2.2 Regularization

There are several ways to regularize your network:

1. L2 regularization penalizes higher weights:

J(w, b) =
1

m

m∑
i=1

L(ŷ(i), y(i)) +
λ

2m
||w||22 . (3)

2. Dropout: randomly set some of the weight values to zero. To avoid scaling output values at test time,
use the inverted dropout technique, where during training, you divide the output by the keep_prob.
The intuition is that you can’t rely on any one feature, so you have to spread out the weights. Slows
down training by a factor of two.

3. Data augmentation.

4. Early stopping is bad because it mixes optimization and not overfitting.

1.2.3 Activation functions

1. Sigmoid: σ(z) = 1
1+e−z is almost never used, except for the output layer in binary classification.

2. Tanh: tanh(z) = ez−e−z

ez+e−z works better than sigmoid because the activations are closer to zero and you
often normalize your input data to have zero mean.

3. ReLU: a(z) = max(0, z) solves the vanishing gradient problem for positive values and therefore helps
the network learn faster. Also, it’s derivative is faster to compute. It suffers from the dying ReLU
problem, however, where a neuron will output zero if it’s inputs are negative.

4. Leaky ReLU where a(z) = max(0.01z, z) gives dying ReLUs a chance to wake up.

5. ELU: a(z) = max(ez−1, z) is the best. It beats Leaky ReLU because it is smooth around z = 0, which
speeds up gradient descent because it does not bounce as much left and right of z = 0. It is slower to
compute but compensates for this by its faster convergence rate.

1.2.4 Initialization

The more hidden units in a layer, the smaller the initialized weights should be. You can initialize the weights
with a normal distribution with mean 0 and standard deviation of:

• For the xavier initialization, use
√

2
ninputs+noutputs

1.2.5 Optimization algorithms

• Mini-batching

– Say m = 5, 000, 000, then make mini-batches of 1,000 for t = 5, 000 minibatches. Then for t = 1
to 5, 000, gradient descent like usual.

– Mini-batch size 1 is stochastic gradient descent, where you lose speedup from vectorization.

– Best mini-batch size typically between 1 and m, i.e., 64, 128, 256, 512.

2

June 8, 2020 Jason W. Wei

• Momentum calculates an exponentially weighted average of examples, i.e., smooths out the steps of
gradient descent. For each iteration,

1. Compute dW for the mini-batch.

2. vdW = β vdW + (1− β)dW (think of vdW as velocity and dW as acceleration)

3. W = W − α vdW
• RMSprop aims to dampen oscillations. For each iteration,

1. Compute dW for the mini-batch.

2. sdW = β sdW + (1− β)dW 2 (sdW is large when dW oscillates a lot)

3. W = W − α dW√
sdW

(slower updates when sdW is large)

• Adam (adaptive moment estimation) optimization combines momentum and RMSprop, where typically
β1 = 0.9 and β2 = 0.999. Initialize vdw = 0, sdw = 0. For each iteration t,

1. Compute dW for the mini-batch.

2. vdW = β1 vdW + (1− β1)dW

3. sdW = β2 sdW + (1− β2)dW 2

4. vcorrecteddW = vdW
1−βt

1

5. scorrecteddW = sdW
1−βt

2

6. W = W − α vcordW√
scordW

• Batch normalization normalizes the hidden layer outputs z[l]. Given some intermediate values z(1)...z(m),

1. Compute mean µ = 1
m

∑
z and variance σ2 = 1

m

∑
(z − µ)

2

2. Compute the normalized output z
(i)
norm = z(i)−µ√

σ2

3. Use z̃(i) = γ z
(i)
norm + β instead of z(i), where γ and β are learnable parameters.

This sort of gets rid of the bias terms and allows the layers to learn independently.

• Learning rate decay: at each epoch, αt = 0.95 αt−1 .

• Use the softmax function for multi-class classification:

softmax(yi) =
eyi∑
eyi

(4)

3

June 8, 2020 Jason W. Wei

1.2.6 Q & A

1. Why does L2 regularization work? Think of it as making a simpler network. A higher regular-
ization parameter λ makes w → 0. And so if you are using a tanh activation function, for example,
then the activation is more linear at w → 0, so it is harder to form complex decision boundaries that
overfit.

2. Why is L2 regularization better than L1? L1 creates sparse matrices, because it penalizes smaller
values more than L2 does. L2 is more popular.

3. Why do you need non-linear activation functions? Because a[2] = w[2]w[1]x and you can express
w[2]w[1] as some w so there’s no point in multiple hidden layers. I.e., the decomposition of two linear
activation functions is a single linear activation function.

4. How do you train neural networks with imbalanced data? The simplest approach is to duplicate
the imbalanced data to equal your balanced data. More elegant ways of doing this are enforcing balance
in each minibatch through sampling, computing weighted gradients, and modifying the loss function.

4

	Key Concepts
	Logistic Regression
	Improving Deep Neural Nets
	Bias and Variance
	Regularization
	Activation functions
	Initialization
	Optimization algorithms
	Q & A

	Deriving Backprop
	Forward Pass
	Backward Pass

	k-means Clustering
	Convolutional Neural Networks
	Basic ConvNets
	ResNet
	Inception Net
	Q & A

	Recurrent Neural Networks

	Natural Language Processing
	Word Embeddings
	Attention
	Transformers
	BERT

